Having access to high-quality curriculum materials (HQCMs) is an important component of increasing equitable access to a rigorous education that prepares every student for college and careers. In answer to this national movement to increase access through high-quality materials, the State of Rhode Island, in 2019, passed RIGL§ 16.22.30-33. The legislation requires that all Rhode Island Local Education Agencies (LEAs) adopt HQCMs in K–12 schools that are (1) aligned with academic standards, (2) aligned with the curriculum frameworks, and (3) aligned with the statewide standardized test(s), where applicable.
RIDE uses various factors to determine high quality, primarily using information from EdReports, a non-profit, independent organization that uses teams of trained teachers to conduct reviews of K–12 English language arts (ELA), mathematics, and science curricula. Informed by EdReports as a baseline, RIDE’s list includes only curricula that are rated “Green” in all three gateways: (1 & 2) alignment to standards with depth and quality in the content area, and (3) usability of instructional materials for teachers and students. Because EdReports’ gateways comprise many indicators, which provide more in-depth looks across the integral components of instructional materials, it is important to note that having a “Green-rated” curriculum is a solid foundation, yet not enough on its own to ensure alignment to local instructional priorities and students’ needs. The curriculum adoption process should include consideration of an LEA’s instructional vision, multilingual learner (MLL) needs, and culturally responsive and sustaining education (CRSE). Selection is only the starting point in the larger process of adoption and implementation of high-quality instructional materials. LEAs should consider curriculum adoption and implementation an iterative process where the efficacy of a curriculum is reviewed and evaluated on an ongoing basis.
Coherence is one major consideration when adopting a new curriculum. One way of achieving coherence is the vertical articulation in a set of materials, or the transition and connection of skills, content, and pedagogy from grade to grade. Consideration of coherence is necessary to ensure that students experience a learning progression of skills and content that build over time through elementary, middle, and high school. As such, LEAs who consider the adoption of curriculum materials are cautioned against choosing a curriculum that is high quality at only one grade level, as it is likely it will disrupt a cohesive experience in the learning progression from grade to grade in the school or district.
While the standards describe what students should know and be able to do, they do not dictate how they should be taught, or the materials that should be used to teach and assess those (NGA & CCSSO, 2010). Curriculum materials, when aligned to the standards, provide students with varied opportunities to gain the knowledge and skills outlined by the standards. Assessments, when aligned to the standards, have the goal of understanding how student learning is progressing toward acquiring proficiency in the knowledge and skills outlined by the standards as delivered by the curriculum through instruction (CSAI, 2018).
No set of grade-level standards can reflect the great variety of abilities, needs, learning rates, and achievement levels in any given classroom. The standards define neither the support materials that some students may need nor the advanced materials that others should have access to. It is also beyond the scope of the standards to define the full range of support appropriate for MLLs and for differently-abled students. Still, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills that will be necessary in their postsecondary lives. The standards should be read as allowing for the widest possible range of students to participate fully from the outset with appropriate accommodations to ensure maximum participation of students, particularly those from historically underserved populations (MDOE, 2017).
Having access to HQCMs is an important component of increasing equitable access to a rigorous education that prepares every student for college and careers.
RIDE’s mission for College and Career Readiness is to build an education system in Rhode Island that prepares all students for success in college and career. This means that all doors remain open and students are prepared for whatever their next steps may be after high school.
Secondary education, which begins in middle school and extends through high school graduation, is the point in the educational continuum where students experience greater choice on their journey to college and career readiness. Students have access to a wide range of high-quality personalized learning opportunities and academic coursework, and have a variety of options available to complete their graduation requirements. To improve student engagement and increase the relevance of academic content, students may choose to pursue a number of courses and learning experiences that align to a particular area of interest, including through dedicated career and technical education programs or early college coursework opportunities.
Secondary level students have opportunities to be able to control the pace, place, and content of their learning experience while meeting state and local requirements. Rhode Island middle and high school students will have access to a wide range of high-quality early college and early career training programs that enable them to earn high-value, portable credit and credentials.
Next Generation Science Standards Commitment to CCR
The following information is summarized from the nextgenscience.org, NGSS Lead States (2013). A deeper dive into How NGSS is committed to College and Career Readiness can be found in Appendix C: College and Career Readiness, NGSS Lead States (2013).
Rigorous standards designed to support college and career readiness provide equitable access and lead to a deep understanding of content for students when high-quality instructional materials are aligned, coherent, and incorporate effective teaching and learning practices.
- A high-quality, robust science education means students will develop an in-depth understanding of content and will gain knowledge and develop skills — communication, collaboration, inquiry, problem solving, and flexibility — that will serve them throughout their educational and professional lives.
- High-quality STEM (science, technology, engineering and mathematics) standards allow educators to teach effectively, moving their practice toward how students learn best — in a hands-on, collaborative, and integrated environment rooted in inquiry and discovery. The NGSS require thinking and reasoning rather than rote memorization.2
- The definition of what it means to be “literate” in science continues to grow and now includes the use of technology, critical thinking, and analytical skills. As citizens, we are increasingly asked to make informed decisions on issues ranging from healthcare to energy policy that affect ourselves, our families, and our communities. Having a deep understanding of scientific concepts and processes and the ability to understand and apply this knowledge is essential.2
- Our nation’s science teachers are finding that when educators raise expectations and give students the right tools and learning environment, students are capable of remarkable science literacy and achievement.2
- A strong science education equips students with skills that are necessary for all careers — within and beyond STEM fields. Students need the right foundation to tackle long-term and difficult issues that face our generation and future generations.2
- A high-quality, robust science education means students will develop an in-depth understanding of content and will gain knowledge and develop skills — communication, collaboration, inquiry, problem solving, flexibility — that will serve them throughout their educational and professional lives.2
2 “Next Generation Science Standards Fact Sheet for Teachers,” (2014) https://www.oregon.gov/ode/educator-resources/standards/science/Documents/ngss-fact-sheet---teachers-final-7-27-14.pdf
The organization of the Next Generation Science Standards is based on the core ideas in the major fields of natural science from the Framework, plus one set of performance expectations for engineering. The Framework lists 11 core ideas, four in life sciences, four in physical sciences, and three in Earth and space sciences. The core ideas are divided into a total of 39 sub-ideas, and each sub-idea is elaborated in a list of what students should understand about that sub-idea at the end of 2nd, 5th, 8th, and 11th grade. These grade-specific statements are called disciplinary core ideas.
Commonalities among the Practices in Mathematics and English Language Arts
The following resource3 highlights the relationships and Convergences found in the Common Core State Standards in Mathematics (practices), Common Core State Standards in ELA/Literacy*(student portraits), and A Framework for K-12 Science Education (science & engineering practices). When reviewing the Next Generations Science Standards, note that they were designed to integrate developmentally appropriate Math and ELA standards to support language development accordingly.

For a deeper dive into how the standards work together, visit: https://static.nsta.org/ngss/ExplanationOfVennDiagram.pdf
The National Research Council's (NRC) Framework includes a vision of what it means for students to be proficient. It includes the idea that science is a body of evidence that is continually changing based on new evidence. This body of facts includes three domains that are considered when forming each standard, performance expectation as described in NGSS Lead States (2013).
The following introduction is adapted directly from NGSS Lead States, Three-Dimensions (2013).
Dimension 1: Science and Engineering Practices
The practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems. The NRC uses the term “practices” instead of a term like “skills” to emphasize that engaging in scientific investigation requires not only skill, but also knowledge that is specific to each practice. Part of the NRC’s intent is to better explain and extend what is meant by “inquiry” in science and the range of cognitive, social, and physical practices that it requires.
Although engineering design is similar to scientific inquiry, there are significant differences. For example, scientific inquiry involves the formulation of a question that can be answered through investigation, while engineering design involves the formulation of a problem that can be solved through design. The engineering aspects of the Next Generation Science Standards will clarify for students the relevance of science, technology, engineering and mathematics (the four STEM fields) to everyday life and how engineers design solutions based on specific criteria and constraints (paras. 2-3).
Dimension 2 Crosscutting Concepts
Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. They include: Patterns; Cause and effect; Scale, proportion and quantity; Systems and system models; Energy and matter; Structure and function; Stability and change. The Framework emphasizes that these concepts need to be made explicit for students because they provide an organizational schema for interrelating knowledge from various science fields into a coherent and scientifically-based view of the world (para4).
Coherence is also built into the standards in how they reinforce a major topic in a grade by utilizing supporting, complementary topics. For example, instead of presenting the topic of data displays as an end in and of itself, the topic is used to support grade-level word problems in which students apply mathematical skills to solve problems.
Dimension 3: Disciplinary Core Ideas
Disciplinary core ideas have the power to focus K–12 science curriculum, instruction and assessments on the most important aspects of science. To be considered core, the ideas should meet at least two of the following criteria and ideally all four:
- Have broad importance across multiple sciences or engineering disciplines or be a key organizing concept of a single discipline;
- Provide a key tool for understanding or investigating more complex ideas and solving problems;
- Relate to the interests and life experiences of students or be connected to societal or personal concerns that require scientific or technological knowledge; and
- Be teachable and learnable over multiple grades at increasing levels of depth and sophistication (paras. 25-6).
In addition to the standards being three-dimensional, NGSS are committed to the integration of Engineering Design Standards. The Engineering standards are integrated K–12, in the context of specific Performance Expectations and are implemented with the same three-dimensional approach (Lead States, Appendix I, 2013).
“…studying and engaging in the practices of science and engineering during their K–12 schooling should help students see how science and engineering are instrumental in addressing major challenges that confront society today, such as generating sufficient energy, preventing and treating diseases, maintaining supplies of clean water and food, and solving the problems of global environmental change.” (NRC Framework, 2012, p. 9).
To dive deeper into the role of Engineering Design in NGSS, please visit NGSS Appendix I.
A Science Framework for K–12 Science Education (2012) provides the blueprint for developing the NGSS. The Framework expresses a vision in science education that requires students to operate at the nexus of three dimensions of learning: Science and Engineering Practices (SEPs), Crosscutting Concepts (CCCs), and Disciplinary Core Ideas (DCIs). The Framework identified a small number of disciplinary core ideas that all students should learn with increasing depth and sophistication, from kindergarten through 12th grade. Key to the vision expressed in the Framework is for students to learn these disciplinary core ideas in the context of science and engineering practices. The importance of combining science and engineering practices and disciplinary core ideas is stated in the Framework as follows:
“Standards and performance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content.” (NRC Framework, 2012, p. 218)
The following overview of the Science and Engineering Practices was modified from NGSS Lead States (2013). The Next Generation Science Standards: For States by States, Appendix F. Retrieved from https://www.nextgenscience.org. (2013).
The Framework specifies that each performance expectation must combine a relevant practice of science or engineering, with a core disciplinary idea and crosscutting concept, appropriate for students of the designated grade level. That guideline is perhaps the most significant way in which the NGSS differs from prior standards documents. Science assessments should not assess students’ understanding of core ideas separately from their abilities to use the practices of science and engineering. They should be assessed together, showing students not only “know” science concepts; but also, students can use their understanding to investigate the natural world through the practices of science inquiry, or solve meaningful problems through the practices of engineering design. The Framework uses the term “practices” rather than “science processes” or “inquiry” skills for a specific reason:
We use the term “practices” instead of a term such as “skills” to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. (NRC Framework, 2012, p. 30)
Guiding Principles
The development process of the standards provided insights into science and engineering practices. These insights are shared in the following guiding principles:
Students in grades K–12 should engage in all eight practices over each grade band. All eight practices are accessible at some level to young children; students’ abilities to use the practices grow over time. However, the NGSS only identifies the capabilities students are expected to acquire by the end of each grade band (K–2, 3–5, 6–8, and 9–12). Curriculum developers and teachers determine strategies that advance students’ abilities to use the practices.
Practices grow in complexity and sophistication across the grades. The Framework suggests how students’ capabilities to use each of the practices should progress as they mature and engage in science learning. For example, the practice of “planning and carrying out investigations” begins at the kindergarten level with guided situations in which students have assistance in identifying phenomena to be investigated, and how to observe, measure, and record outcomes. By upper elementary school, students should be able to plan their own investigations. The nature of investigations that students should be able to plan and carry out is also expected to increase as students mature, including the complexity of questions to be studied, the ability to determine what kind of investigation is needed to answer different kinds of questions, whether or not variables need to be controlled and if so, which are most important, and at the high school level, how to take measurement error into account. As listed in the tables in this chapter, each of the eight practices has its own progression, from kindergarten to 12th grade. While these progressions are derived from Chapter 3 of the Framework, they are refined based on experiences in crafting the NGSS and feedback received from reviewers.
Each practice may reflect science or engineering. Each of the eight practices can be used in the service of scientific inquiry or engineering design. The best way to ensure a practice is being used for science or engineering is to ask about the goal of the activity. Is the goal to answer a question? If so, students are doing science. Is the purpose to define and solve a problem? If so, students are doing engineering.
Practices represent what students are expected to do and are not teaching methods or curriculum. The Framework occasionally offers suggestions for instruction, such as how a science unit might begin with a scientific investigation, which then leads to the solution of an engineering problem. The NGSS avoids such suggestions since the goal is to describe what students should be able to do, rather than how they should be taught. For example, it was suggested for the NGSS to recommend certain teaching strategies such as using biomimicry—the application of biological features to solve engineering design problems. Although instructional units that make use of biomimicry seem well-aligned with the spirit of the Framework to encourage integration of core ideas and practices, biomimicry and similar teaching approaches are more closely related to curriculum and instruction than to assessment. Hence, the decision was made not to include biomimicry in the NGSS.
The eight practices are not separate; they intentionally overlap and interconnect. As explained by Bell, et al. (2012), the eight practices do not operate in isolation. Rather, they tend to unfold sequentially, and even overlap. For example, the practice of “asking questions” may lead to the practice of “modeling” or “planning and carrying out an investigation,” which in turn may lead to “analyzing and interpreting data.” The practice of “mathematical and computational thinking” may include some aspects of “analyzing and interpreting data.” Just as it is important for students to carry out each of the individual practices, it is important for them to see the connections among the eight practices.
Performance expectations focus on some, but not all capabilities associated with a practice. The Framework identifies a number of features or components of each practice. The practices matrix, described in this section, lists the components of each practice as a bulleted list within each grade band. As the performance expectations were developed, it became clear that it’s too much to expect each performance to reflect all components of a given practice. The most appropriate aspect of the practice is identified for each performance expectation.
Engagement in practices is language intensive and requires students to participate in classroom science discourse. The practices offer rich opportunities and demands for language learning while advancing science learning for all students (Lee, Quinn, & Valdés, 2013). English language learners, students with disabilities that involve language processing, students with limited literacy development, and students who are speakers of social or regional varieties of English that are generally referred to as “non-Standard English” stand to gain from science learning that involves language-intensive scientific and engineering practices. When supported appropriately, these students are capable of learning science through their emerging language and comprehending and carrying out sophisticated language functions (e.g., arguing from evidence, providing explanations, developing models) using less-than-perfect English. By engaging in such practices, moreover, they simultaneously build on their understanding of science and their language proficiency (i.e., capacity to do more with language).
On the following pages, each of the eight practices is briefly described. Each description ends with a table illustrating the components of the practice that students are expected to master at the end of each grade band. All eight tables comprise the practices matrix. During development of the NGSS, the practices matrix was revised several times to reflect improved understanding of how the practices connect with the disciplinary core ideas (NGSS Lead States, Appendix F, 2013, pp. 1-3).
Read the eight Science and Engineering Practices Here: Appendix F.
- Practice 1 Asking Questions and Defining Problems Progression Matrix p. 4
- Practice 2 Developing and Using Models Progression Matrix p. 6
- Practice 3 Planning and Carrying Out Investigations Progression Matrix p. 7
- Practice 4 Analyzing and Interpreting Data Progression Matrix p. 9
- Practice 5 Using Mathematics and Computational Thinking Progression Matrix p. 10
- Practice 6 Constructing Explanations and Designing Solutions Progression Matrix p. 11
- Practice 7 Engaging in Argument from Evidence Progression Matrix p. 13
- Practice 8 Obtaining, Evaluating, and Communicating Information Progression Matrix p. 15
Reflecting on the Practices of Science and Engineering
Engaging students in the practices of science and engineering outlined in this section is not sufficient for scientific literacy. It is also important for students to stand back and reflect on how these practices have contributed to their own development, and to the accumulation of scientific knowledge and engineering accomplishments over the ages. Accomplishing this is a matter for curriculum and instruction, rather than standards, so specific guidelines are not provided in this document. Nonetheless, this section would not be complete without an acknowledgment that reflection is essential if students are to become aware of themselves as competent and confident learners and doers in the realms of science and engineering (NGSS Lead States, Appendix F, 2013, p. 16).
Resource
Website with print friendly pdfs of K–12 Progression of each Science and Engineering Practice Progression: NGSS Hub (nsta.org)
The following overview of the Cross Cutting Concepts was modified from NGSS Lead States (2013). The Next Generation Science Standards: For States by States, Appendix G. Retrieved from https://www.nextgenscience.org.
A Framework for K–12 Science Education: Practices, Core Ideas, and Crosscutting Concepts (Framework) recommends science education in grades K–12 be built around three major dimensions: scientific and engineering practices; crosscutting concepts that unify the study of science and engineering through their common application across fields; and core ideas in the major disciplines of natural science. The purpose of this appendix is to describe the second dimension — crosscutting concepts — and to explain its role in the Next Generation Science Standards.
Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. — Framework, p. 233
The Framework identifies seven crosscutting concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas (pp. 2 and 8) and develop a coherent and scientifically-based view of the world (p. 83). The seven crosscutting concepts presented in Chapter 4 of the Framework are as follows:
- Patterns: Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.
- Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.
- Scale, proportion, and quantity: In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.
- Systems and system models: Defining the system under study — specifying its boundaries and making explicit a model of that system — provides tools for understanding and testing ideas that are applicable throughout science and engineering.
- Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.
- Structure and function: The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.
- Stability and change: For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.
Guiding Principles of the Cross Cutting Concepts
The Framework recommended crosscutting concepts be embedded in the science curriculum beginning in the earliest years of schooling and suggested a number of guiding principles for how they should be used. The development process of the standards provided insights into the crosscutting concepts. These insights are shared in the following guiding principles.
Crosscutting concepts can help students better understand core ideas in science and engineering. When students encounter new phenomena, whether in a science lab, field trip, or on their own, they need mental tools to help engage in and come to understand the phenomena from a scientific point of view. Familiarity with crosscutting concepts can provide that perspective. For example, when approaching a complex phenomenon (either a natural phenomenon or a machine), an approach that makes sense is to begin by observing and characterizing the phenomenon in terms of patterns. A next step might be to simplify the phenomenon by thinking of it as a system and modeling its components and how they interact. In some cases, it would be useful to study how energy and matter flow through the system, or to study how structure affects function (or malfunction). These preliminary studies may suggest explanations for the phenomena, which could be checked by predicting patterns that might emerge if the explanation is correct, and matching those predictions with those observed in the real world.
Crosscutting concepts can help students better understand science and engineering practices. Because the crosscutting concepts address the fundamental aspects of nature, they also inform the way humans attempt to understand it. Different crosscutting concepts align with different practices, and when students carry out these practices, they are often addressing one of these crosscutting concepts. For example, when students analyze and interpret data, they are often looking for patterns in observations, mathematical or visual. The practice of planning and carrying out an investigation is often aimed at identifying cause and effect relationships: if you poke or prod something, what will happen? The crosscutting concept of “Systems and System Models” is clearly related to the practice of developing and using models.
Repetition in different contexts will be necessary to build familiarity. Repetition is counter to the guiding principles the writing team used in creating performance expectations to reflect the core ideas in the science disciplines. In order to reduce the total amount of material students are held accountable to learn, repetition was reduced whenever possible. However, crosscutting concepts are repeated within grades at the elementary level and grade-bands at the middle and high school levels so these concepts “become common and familiar touchstones across the disciplines and grade levels.” (p. 83)
Crosscutting concepts should grow in complexity and sophistication across the grades. Repetition alone is not sufficient. As students grow in their understanding of the science disciplines, depth of understanding crosscutting concepts should grow as well. The writing team has adapted and added to the ideas expressed in the Framework in developing a matrix for use in crafting performance expectations that describe student understanding of the crosscutting concepts. The matrix is found at the end of this section.
Crosscutting concepts can provide a common vocabulary for science and engineering. The practices, disciplinary core ideas, and crosscutting concepts are the same in science and engineering. What is different is how and why they are used — to explain natural phenomena in science, and to solve a problem or accomplish a goal in engineering. Students need both types of experiences to develop a deep and flexible understanding of how these terms are applied in each of these closely allied fields. As crosscutting concepts are encountered repeatedly across academic disciplines, familiar vocabulary can enhance engagement and understanding for English language learners, students with language processing difficulties, and students with limited literacy development.
Crosscutting concepts should not be assessed separately from practices or core ideas. Students should not be assessed on their ability to define “pattern,” “system,” or any other crosscutting concepts as a separate vocabulary word. To capture the vision in the Framework, students should be assessed on the extent to which they have achieved a coherent scientific worldview by recognizing similarities among core ideas in science or engineering that may at first seem very different, but are united through crosscutting concepts.
Performance expectations focus on some, but not all capabilities associated with a crosscutting concept. As core ideas grow in complexity and sophistication across the grades, it becomes more and more difficult to express them fully in performance expectations. Consequently, most performance expectations reflect only some aspects of a crosscutting concept. These aspects are indicated in the right-hand foundation box in each of the standards. All aspects of each core idea considered by the writing team can be found in the matrix at the end of this section.
Crosscutting concepts are for all students. Crosscutting concepts raise the bar for students who have not achieved at high levels in academic subjects and often are assigned to classes that emphasize “the basics,” which in science may be taken to provide primarily factual information and lower order thinking skills. Consequently, it is essential that all students engage in using crosscutting concepts, which could result in leveling the playing field and promoting deeper understanding for all students.
Inclusion of Nature of Science and Engineering Concepts. Sometimes included in the crosscutting concept foundation boxes are concepts related to materials from the “Nature of Science” or “Science, Technology, Society, and the Environment.” These are not to be confused with the “Crosscutting Concepts” but rather represent an organizational structure of the NGSS recognizing concepts from both the Nature of Science and Science, Technology, Society, and the Environment that extend across all of the sciences. Readers should use Appendices H and J for further information on these ideas. (NGSS Lead States, Appendix G, 2013, pp.1-3)
Progression of Crosscutting Concepts
Across the Grades Following is a brief summary of how each crosscutting concept increases in complexity and sophistication across the grades as envisioned in the K–12 Framework. Examples of performance expectations illustrate how these ideas play out in the NGSS. https://static.nsta.org/ngss/MatrixOfCrosscuttingConcepts.pdf
The following overview of Engineering Design in the NGSS was modified from The Next Generation Science Standards: For States by States, Appendix I. Retrieved from https://www.nextgenscience.org. (2013).
The Next Generation Science Standards (NGSS) represent a commitment to integrate engineering design into the structure of science education by raising engineering design to the same level as scientific inquiry when teaching science disciplines at all levels, from kindergarten to 12th grade. There are both practical and inspirational reasons for including engineering design as an essential element of science education. Providing students with a foundation in engineering design allows them to better engage in and aspire to solve the major societal and environmental challenges they will face in the decades ahead.
Key Definitions
One of the problems of prior standards has been the lack of clear and consistent definitions of the terms science, engineering, and technology. A Framework for K–12 Science Education has defined these terms as follows:
In the K–12 context, “science” is generally taken to mean the traditional natural sciences: physics, chemistry, biology, and (more recently) earth, space, and environmental sciences.... We use the term “engineering” in a very broad sense to mean any engagement in a systematic practice of design to achieve solutions to particular human problems. Likewise, we broadly use the term “technology” to include all types of human-made systems and processes—not in the limited sense often used in schools that equates technology with modern computational and communications devices. Technologies result when engineers apply their understanding of the natural world and of human behavior to design ways to satisfy human needs and wants. (NRC 2012, pp. 11-12)
The Framework’s definitions address two common misconceptions. The first is that engineering design is not just applied science. As described in Appendix F: Science and Engineering Practices in the NGSS, the practices of engineering have much in common with the practices of science, although engineering design has a different purpose and product than scientific inquiry. The second misconception is that technology describes all the ways that people have modified the natural world to meet their needs and wants. Technology does not just refer to computers or electronic devices. The purpose of defining “engineering” more broadly in the Framework and NGSS is to emphasize engineering design practices that all citizens should learn. For example, students are expected to be able to define problems — situations that people wish to change — by specifying criteria and constraints for acceptable solutions; generating and evaluating multiple solutions; building and testing prototypes; and optimizing a solution. These practices have not been explicitly included in science standards until now.
Engineering Design in the Framework. The term “engineering design” has replaced the older term “technological design,” consistent with the definition of engineering as a systematic practice for solving problems, and technology as the result of that practice. According to the Framework: “From a teaching and learning point of view, it is the iterative cycle of design that offers the greatest potential for applying science knowledge in the classroom and engaging in engineering practices” (NRC 2012, pp. 201-2). The Framework recommends that students explicitly learn how to engage in engineering design practices to solve problems. The Framework also projects a vision of engineering design in the science curriculum and of what students can accomplish from early school years to high school:
- Defining and delimiting engineering problems involves stating the problem to be solved as clearly as possible in terms of criteria for success, and constraints or limits.
- Designing solutions to engineering problems begins with generating a number of different possible solutions, then evaluating potential solutions to see which ones best meet the criteria and constraints of the problem.
- Optimizing the design solution involves a process in which solutions are systematically tested and refined and the final design is improved by trading off less important features for those that are more important.
It is important to point out that these component ideas do not always follow in order, any more than do the “steps” of scientific inquiry. At any stage, a problem-solver can redefine the problem or generate new solutions to replace an idea that just isn’t working out.
Engineering Design in Relation to Student Diversity
The NGSS inclusion of engineering with science has major implications for non-dominant student groups. From a pedagogical perspective, the focus on engineering is inclusive of students who may have traditionally been marginalized in the science classroom or experienced science as not being relevant to their lives or future. By asking questions and solving meaningful problems through engineering in local contexts (e.g., watershed planning, medical equipment, instruments for communication for the Deaf), diverse students deepen their science knowledge, come to view science as relevant to their lives and future, and engage in science in socially relevant and transformative ways.
From a global perspective, engineering offers opportunities for “innovation” and “creativity” at the K–12 level. Engineering is a field that is critical to undertaking the world’s challenges, and April 2013 NGSS Release Page 3 of 7 exposure to engineering activities (e.g., robotics and invention competitions) can spark interest in the study of STEM or future careers (National Science Foundation, 2010). This early engagement is particularly important for students who have traditionally not considered science as a possible career choice, including females and students from multiple languages and cultures in this global community.
Engineering Design in the NGSS
In the NGSS, engineering design is integrated throughout the document. First, a fair number of standards in the three disciplinary areas of life, physical, and Earth and space science begin with an engineering practice. In these standards, students demonstrate their understanding of science through the application of engineering practices. Second, the NGSS also include separate standards for engineering design at the K-2, 3-5, 6-8, and 9-12 grade levels. This multi-pronged approach, including engineering design both as a set of practices and as a set of core ideas, is consistent with the original intention of the Framework.
Engineering Grades K–2
Engineering design in the earliest grades introduces students to “problems” as situations that people want to change. They can use tools and materials to solve simple problems, use different representations to convey solutions, and compare different solutions to a problem and determine which is best. Students in all grade levels are not expected to come up with original solutions, although original solutions are always welcome. Emphasis is on thinking through the needs or goals that need to be met and which solutions best meet those needs and goals Framework (NGSS Lead States, Appendix I, 2013, pp. 1-3).

Image source: Appendix I (2013)
Engineering Grades 3–5
At the upper elementary grades, engineering design engages students in more formalized problem solving. Students define a problem using criteria for success and constraints or limits of possible solutions. Students research and consider multiple possible solutions to a given problem. Generating and testing solutions also becomes more rigorous as the students learn to optimize solutions by revising them several times to obtain the best possible design (NGSS Lead States, Appendix I , 2013, p. 4).

Image source: Appendix I (2013)
Engineering Grades 6–8
At the middle school level, students learn to sharpen the focus of problems by precisely specifying criteria and constraints of successful solutions, taking into account not only what needs the problem is intended to meet, but also the larger context within which the problem is defined, including limits to possible solutions. Students can identify elements of different solutions and combine them to create new solutions. Students at this level are expected to use systematic methods to compare different solutions to see which best meet criteria and constraints, and to test and revise solutions a number of times in order to arrive at an optimal design (NGSS Lead States, Appendix I, 2013, pp. 4-5).

Image source: Appendix I (2013)
Engineering Grades 9–12
Engineering design at the high school level engages students in complex problems that include issues of social and global significance. Such problems need to be broken down into simpler problems to be tackled one at a time. Students are also expected to quantify criteria and constraints so that it will be possible to use quantitative methods to compare the potential of different solutions. While creativity in solving problems is valued, emphasis is on identifying the best solution to a problem, which often involves researching how others have solved it before. Students are expected to use mathematics and/or computer simulations to test solutions under different conditions, prioritize criteria, consider trade-offs, and assess social and environmental impacts (NGSS Lead States, Appendix I, 2013, pp. 5-6).

Image source: Appendix I (2013)
Conclusion
The inclusion of engineering design within the fabric of the NGSS has profound implications for curriculum, teaching, and assessment. All students need opportunities to acquire engineering design practices and concepts alongside the practices and concepts of science. The decision to integrate engineering design into the science disciplines is not intended either to encourage or discourage development of engineering courses.
In recent years, many middle and high schools have introduced engineering courses that build students’ engineering skill, engage them in experiences using a variety of technologies, and provide information on a range of engineering careers. The engineering design standards included in the NGSS could certainly be a component of such courses, but most likely do not represent the full scope of such courses or an engineering pathway. Rather, the purpose of the NGSS is to emphasize the key knowledge and skills that all students need in order to engage fully as workers, consumers, and citizens in 21st century society (NGSS Lead States, Appendix I, 2013, p.6)
Disciplinary Core Idea Progressions
The Framework describes the progression of disciplinary core ideas in the grade band endpoints. The progressions are summarized in Appendix E (2013), which describe the content that occurs at each grade band. Some of the sub-ideas within the disciplinary core ideas overlap significantly. Readers will notice there is not always a clear division between those ideas, so several progressions are divided among more than one sub-idea. The purpose of these diagrams is to briefly describe the content at each grade band for each disciplinary core idea across K–12. This progression example matrix below is for reference only. The full progressions can be seen in the Framework. In addition, the NGSS show the integration of the three dimensions. This document in no way endorses separating the disciplinary core ideas from the other two dimensions (NGSS Lead States, Appendix E, 2013, p.1).
Printable Disciplinary Core Ideas progressions for each science domain and topic
K-12 Progression of DCIs https://static.nsta.org/ngss/20130509/AppendixE-DCIProgressionsWithinNGSS_1.pdf
Kindergarten Standards Overview
The performance expectations in kindergarten help students formulate answers to questions such as: “What happens if you push or pull an object harder? Where do animals live and why do they live there? What is the weather like today and how is it different from yesterday?” Kindergarten performance expectations include PS2, PS3, LS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of patterns and variations in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather. Students are able to apply an understanding of the effects of different strengths or different directions of pushes and pulls on the motion of an object to analyze a design solution. Students are also expected to develop understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live. The crosscutting concepts of patterns; cause and effect; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas.
In the kindergarten performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades K-2 By Topic, 2013, p.2).
Grade 1 Standards Overview
The performance expectations in first grade help students formulate answers to questions such as: “What happens when materials vibrate? What happens when there is no light? What are some ways plants and animals meet their needs so that they can survive and grow? How are parents and their children similar and different? What objects are in the sky and how do they seem to move?” First grade performance expectations include PS4, LS1, LS3, and ESS1 Disciplinary Core Ideas from the NRC Framework.
Students are expected to develop understanding of the relationship between sound and vibrating materials as well as between the availability of light and ability to see objects. The idea that light travels from place to place can be understood by students at this level through determining the effect of placing objects made with different materials in the path of a beam of light. Students are also expected to develop understanding of how plants and animals use their external parts to help them survive, grow, and meet their needs as well as how behaviors of parents and offspring help the offspring survive. The understanding is developed that young plants and animals are like, but not exactly the same as, their parents. Students are able to observe, describe, and predict some patterns of the movement of objects in the sky. The crosscutting concepts of patterns; cause and effect; structure and function; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas.
In the first-grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades K-2 By Topic, 2013, p.6).
Grade 2 Standards Overview
The performance expectations in second grade help students formulate answers to questions such as: “How does land change and what are some things that cause it to change? What are the different kinds of land and bodies of water? How are materials similar and different from one another, and how do the properties of the materials relate to their use? What do plants need to grow? How many types of living things live in a place?” Second grade performance expectations include PS1, LS2, LS4, ESS1, ESS2, and ETS1 Disciplinary Core Ideas from the NRC Framework.
Students are expected to develop an understanding of what plants need to grow and how plants depend on animals for seed dispersal and pollination. Students are also expected to compare the diversity of life in different habitats. An understanding of observable properties of materials is developed by students at this level through analysis and classification of different materials.
Students are able to apply their understanding of the idea that wind and water can change the shape of the land to compare design solutions to slow or prevent such change. Students are able to use information and models to identify and represent the shapes and kinds of land and bodies of water in an area and where water is found on Earth. The crosscutting concepts of patterns; cause and effect; energy and matter; structure and function; stability and change; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas.
In the second-grade performance expectations, students are expected to demonstrate grade appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades K-2 By Topic, 2013, p.10).
Grade 3 Standards Overview
The performance expectations in third grade help students formulate answers to questions such as: “What is typical weather in different parts of the world and during different times of the year? How can the impact of weather-related hazards be reduced? How do organisms vary in their traits? How are plants, animals, and environments of the past similar or different from current plants, animals, and environments? What happens to organisms when their environment changes? How do equal and unequal forces on an object affect the object? How can magnets be used?” Third grade performance expectations include PS2, LS1, LS2, LS3, LS4, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework.
Students are able to organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students are able to make a claim about the merit of a design solution that reduces the impacts of such hazards. Students are expected to develop an understanding of the similarities and differences of organisms’ life cycles. An understanding that organisms have different inherited traits and that the environment can also affect the traits that an organism develops, is acquired by students at this level. In addition, students are able to construct an explanation using evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Students are expected to develop an understanding of types of organisms that lived long ago and also about the nature of their environments. Third graders are expected to develop an understanding of the idea that when the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. Students are able to determine the effects of balanced and unbalanced forces on the motion of an object and the cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. They are then able to apply their understanding of magnetic interactions to define a simple design problem that can be solved with magnets. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas.
In the third-grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems; developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades 3-5 By Topic, 2013, p.1).
Grade 4 Standards Overview
The performance expectations in fourth grade help students formulate answers to questions such as: “What are waves and what are some things they can do? How can water, ice, wind and vegetation change the land? What patterns of Earth’s features can be determined with the use of maps? How do internal and external structures support the survival, growth, behavior, and reproduction of plants and animals? What is energy and how is it related to motion? How is energy transferred? How can energy be used to solve a problem?” Fourth grade performance expectations include PS3, PS4, LS1, ESS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework.
Students are able to use a model of waves to describe patterns of waves in terms of amplitude and wavelength, and that waves can cause objects to move. Students are expected to develop understanding of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. They apply their knowledge of natural Earth processes to generate and compare multiple solutions to reduce the impacts of such processes on humans. In order to describe patterns of Earth’s features, students analyze and interpret data from maps. Fourth graders are expected to develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. By developing a model, they describe that an object can be seen when light reflected from its surface enters the eye. Students are able to use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object. Students are expected to develop an understanding that energy can be transferred from place to place by sound, light, heat, and electric currents or from object to object through collisions. They apply their understanding of energy to design, test, and refine a device that converts energy from one form to another. The crosscutting concepts of patterns; cause and effect; energy and matter; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas.
In the fourth-grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades 3-5 By Topic, 2013, p.6).
Grade 5 Standards Overview
The performance expectations in fifth grade help students formulate answers to questions such as: “When matter changes, does its weight change? How much water can be found in different places on Earth? Can new substances be created by combining other substances? How does matter cycle through ecosystems? Where does the energy in food come from and what is it used for? How do lengths and directions of shadows or relative lengths of day and night change from day to day, and how does the appearance of some stars change in different seasons?” Fifth grade performance expectations include PS1, PS2, PS3, LS1, LS2, ESS1, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to describe that matter is made of particles too small to be seen through the development of a model. Students develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is conserved. Students determine whether the mixing of two or more substances results in new substances. Through the development of a model using an example, students are able to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. They describe and graph data to provide evidence about the distribution of water on Earth. Students develop an understanding of the idea that plants get the materials they need for growth chiefly from air and water. Using models, students can describe the movement of matter among plants, animals, decomposers, and the environment and that energy in animals’ food was once energy from the sun. Students are expected to develop an understanding of patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; energy and matter; and systems and systems models are called out as organizing concepts for these disciplinary core ideas. In the fifth-grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematics and computational thinking, engaging in argument from evidence, and obtaining, evaluating, and communicating information; and to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Grades 3-5 By Topic, 2013, p.11).
Middle School Grades 6-8 Standards Overview
Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences build on the K – 5 ideas and capabilities to allow learners to explain phenomena central to the physical sciences but also to the life sciences and earth and space science. The performance expectations in physical science blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge to explain real world phenomena in the physical, biological, and earth and space sciences. In the physical sciences, performance expectations at the middle school level focus on students developing understanding of several scientific practices. These include developing and using models, planning and conducting investigations, analyzing and interpreting data, using mathematical and computational thinking, and constructing explanations; and to use these practices to demonstrate understanding of the core ideas. Students are also expected to demonstrate understanding of several of engineering practices including design and evaluation.
The performance expectations in the topic Structure and Properties of Matter help students to formulate an answer to the questions: “How can particles combine to produce a substance with different properties? How does thermal energy affect particles?” by building understanding of what occurs at the atomic and molecular scale. By the end of middle school, students will be able to apply understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They will be able to provide molecular level accounts to explain states of matters and changes between states. The crosscutting concepts of cause and effect; scale, proportion and quantity; structure and function; interdependence of science, engineering, and technology; and influence of science, engineering and technology on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In these performance expectations, students are expected to demonstrate proficiency in developing and using models, and obtaining, evaluating, and communicating information. Students use these scientific and engineering practices to demonstrate understanding of the core ideas.
The performance expectations in the topic Chemical Reactions help students to formulate an answer to the questions: “What happens when new materials are formed? What stays the same and what changes?” by building understanding of what occurs at the atomic and molecular scale during chemical reactions. By the end of middle school, students will be able to provide molecular level accounts to explain that chemical reactions involve regrouping of atoms to form new substances, and that atoms rearrange during chemical reactions. Students are also able to apply an understanding of the design and the process of optimization in engineering to chemical reaction systems. The crosscutting concepts of patterns and energy and matter are called out as organizing concepts for these disciplinary core ideas. In these performance expectations, students are expected to demonstrate proficiency in developing and using models, analyzing and interpreting data, and designing solutions. Students use these scientific and engineering practices to demonstrate understanding of the core ideas.
The performance expectations in the topic Forces and Interactions focus on helping students understand ideas related to why some objects will keep moving, why objects fall to the ground and why some materials are attracted to each other while others are not. Students answer the question, “How can one describe physical interactions between objects and within systems of objects?” At the middle school level, the PS2 Disciplinary Core Idea from the NRC Framework is broken down into two sub-ideas: Forces and Motion and Types of interactions. By the end of middle school, students will be able to apply Newton’s Third Law of Motion to relate forces to explain the motion of objects. Students also apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while other repel. In particular, students will develop understanding that gravitational interactions are always attractive, but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are also able to apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of cause and effect; system and system models; stability and change; and the influence of science, engineering, and technology on society and the natural world serve as organizing concepts for these disciplinary core ideas. In these performance expectations, students are expected to demonstrate proficiency in asking questions, planning and carrying out investigations, and designing solutions, and engaging in argument; and to use these practices to demonstrate understanding of the core ideas.
The performance expectations in the topic Energy help students formulate an answer to the question, “How can energy be transferred from one object or system to another?” At the middle school level, the PS3 Disciplinary Core Idea from the NRC Framework is broken down into four sub-core ideas: Definitions of Energy, Conservation of Energy and Energy Transfer, the Relationship between Energy and Forces, and Energy in Chemical Process and Everyday Life. Students develop their understanding of important qualitative ideas about energy including that the interactions of objects can be explained and predicted using the concept of transfer of energy from one object or system of objects to another, and that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students will also come to know the difference between energy and temperature, and begin to develop an understanding of the relationship between force and energy. Students are also able to apply an understanding of design to the process of energy transfer. The crosscutting concepts of scale, proportion, and quantity; systems and system models; and energy are called out as organizing concepts for these disciplinary core ideas. These performance expectations expect students to demonstrate proficiency in developing and using models, planning investigations, analyzing and interpreting data, and designing solutions, and engaging in argument from evidence and to use these practices to demonstrate understanding of the core ideas in PS3.
The performance expectations in the topic Waves and Electromagnetic Radiation help students formulate an answer to the question, “What are the characteristic properties of waves and how can they be used?” At the middle school level, the PS4 Disciplinary Core Idea from the NRC Framework is broken down into Wave Properties, Electromagnetic Radiation, and Information Technologies and Instrumentation. Students are able to describe and predict characteristic properties and behaviors of waves when the waves interact with matter. Students can apply an understanding of waves as a means to send digital information. The crosscutting concepts of patterns and structure and function are used as organizing concepts for these disciplinary core ideas. These performance expectations focus on students demonstrating proficiency in developing and using models; using mathematical thinking; and obtaining, evaluating and communicating information; and to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, Middle School By Topic, 2013, pp.1-2).
High School Grades 9-12 Standards Overview
Students in high school continue to develop their understanding of the four core ideas in the physical sciences. These ideas include the most fundamental concepts from chemistry and physics, but are intended to leave room for expanded study in upper-level high school courses. The high school performance expectations in Physical Science build on the middle school ideas and skills and allow high school students to explain more in-depth phenomena central not only to the physical sciences, but to life and earth and space sciences as well. These performance expectations blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge to explain ideas across the science disciplines. In the physical science performance expectations at the high school level, there is a focus on several scientific practices. These include developing and using models, planning and conducting investigations, analyzing and interpreting data, using mathematical and computational thinking, and constructing explanations; and to use these practices to demonstrate understanding of the core ideas. Students are also expected to demonstrate understanding of several engineering practices, including design and evaluation.
The performance expectations in the topic Structure and Properties of Matter help students formulate an answer to the question, “How can one explain the structure and properties of matter?” Two sub-ideas from the NRC Framework are addressed in these performance expectations: the structure and properties of matter, and nuclear processes. Students are expected to develop understanding of the substructure of atoms and provide more mechanistic explanations of the properties of substances. Students are able to use the periodic table as a tool to explain and predict the properties of elements. Phenomena involving nuclei are also important to understand, as they explain the formation and abundance of the elements, radioactivity, the release of energy from the sun and other stars, and the generation of nuclear power. The crosscutting concepts of patterns, energy and matter, and structure and function are called out as organizing concepts for these disciplinary core ideas. In these performance expectations, students are expected to demonstrate proficiency in developing and using models, planning and conducting investigations, and communicating scientific and technical information; and to use these practices to demonstrate understanding of the core ideas.
The performance expectations in the topic Chemical Reactions help students formulate an answer to the questions: “How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?” Chemical reactions, including rates of reactions and energy changes, can be understood by students at this level in terms of the collisions of molecules and the rearrangements of atoms. Using this expanded knowledge of chemical reactions, students are able to explain important biological and geophysical phenomena. Students are also able to apply an understanding of the process of optimization in engineering design to chemical reaction systems. The crosscutting concepts of patterns, energy and matter, and stability and change are called out as organizing concepts for these disciplinary core ideas. In these performance expectations, students are expected to demonstrate proficiency in developing and using models, using mathematical thinking, constructing explanations, and designing solutions; and to use these practices to demonstrate understanding of the core ideas.
The Performance Expectations associated with the topic Forces and Interactions supports students’ understanding of ideas related to why some objects will keep moving, why objects fall to the ground, and why some materials are attracted to each other while others are not. Students should be able to answer the question, “How can one explain and predict interactions between objects and within systems of objects?” The disciplinary core idea expressed in the Framework for PS2 is broken down into the sub ideas of Forces and Motion and Types of Interactions. The performance expectations in PS2 focus on students building understanding of forces and interactions and Newton’s Second Law. Students also develop understanding that the total momentum of a system of objects is conserved when there is no net force on the system. Students are able to use Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects. Students are able to apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. The crosscutting concepts of patterns, cause and effect, and systems and system models are called out as organizing concepts for these disciplinary core ideas. In the PS2 performance expectations, students are expected to demonstrate proficiency in planning and conducting investigations, analyzing data and using math to support claims, and applying scientific ideas to solve design problems; and to use these practices to demonstrate understanding of the core ideas.
The Performance Expectations associated with the topic Energy help students formulate an answer to the question, “How is energy transferred and conserved?” The disciplinary core idea expressed in the Framework for PS3 is broken down into four sub-core ideas: Definitions of Energy, Conservation of Energy and Energy Transfer, the Relationship between Energy and Forces, and Energy in Chemical Process and Everyday Life. Energy is understood as quantitative property of a system that depends on the motion and interactions of matter and radiation within that system, and the total change of energy in any system is always equal to the total energy transferred into or out of the system. Students develop an understanding that energy at both the macroscopic and the atomic scale can be accounted for as either motions of particles or energy associated with the configuration (relative positions) of particles. In some cases, the energy associated with the configuration of particles can be thought of as stored in fields. Students also demonstrate their understanding of engineering principles when they design, build, and refine devices associated with the conversion of energy. The crosscutting concepts of cause and effect; systems and system models; energy and matter; and the influence of science, engineering, and technology on society and the natural world are further developed in the performance expectations associated with PS3. In these performance expectations, students are expected to demonstrate proficiency in developing and using models, planning and carrying out investigations, using computational thinking, and designing solutions; and to use these practices to demonstrate understanding of the core ideas.
The Performance Expectations associated with the topic Waves and Electromagnetic Radiation are critical to understand how many new technologies work. As such, this disciplinary core idea helps students answer the question, “How are waves used to transfer energy and send and store information?” The disciplinary core idea in PS4 is broken down into Wave Properties, Electromagnetic Radiation, and Information Technologies and Instrumentation. Students are able to apply understanding of how wave properties and the interactions of electromagnetic radiation with matter can transfer information across long distances, store information, and investigate nature on many scales. Models of electromagnetic radiation as either a wave of changing electric and magnetic fields or as particles are developed and used. Students understand that combining waves of different frequencies can make a wide variety of patterns and thereby encode and transmit information. Students also demonstrate their understanding of engineering ideas by presenting information about how technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. The crosscutting concepts of cause and effect; systems and system models; stability and change; interdependence of science, engineering, and technology; and the influence of engineering, technology, and science on society and the natural world are highlighted as organizing concepts for these disciplinary core ideas. In the PS3 performance expectations, students are expected to demonstrate proficiency in asking questions, using mathematical thinking, engaging in argument from evidence, and obtaining, evaluating and communicating information; and to use these practices to demonstrate understanding of the core ideas (NGSS Lead States, High School By Topic, 2013, pp. 1-3).
For educators with one or more active MLLs on their roster, enacting standards-aligned instruction means working with both state-adopted content standards and state-adopted English language development (ELD) standards. Under ESSA, all educators are required to reflect on the language demands of their grade-level content and move MLLs toward both English language proficiency and academic content proficiency. In other words, every Rhode Island educator shares responsibility for promoting disciplinary language development through content instruction.
Fortunately, the five WIDA ELD Standards lend themselves to integration in the four core content areas. Standard 1 is cross-cutting and applicable in every school context, whereas Standards 2–5 focus on language use in each of the content areas. Standard 3 is dedicated to the language for mathematics. Educators of mathematics are thus expected to support Standard 1 and Standard 3 as part of their core classroom instruction.

Image Source: 2020 Edition of WIDA ELD Standards Framework
Each of the WIDA ELD Standards is broken into four genre families: Narrate, Inform, Explain, and Argue. WIDA refers to these genre families as Key Language Uses (KLUs) and generated them based on an analysis of the language demands placed on students by the academic content standards. The KLUs are important because they drive explicit language instruction in each of the content areas. For Standards 2–5, the distribution of KLUs is similar across grades 4–12, but this distribution varies in the early grades, with grades K–3 placing more emphasis on Inform than Explain and Argue. Of the four content areas, only English language arts features Narrate as very prominent.
Each KLU is further broken down by language function and feature. Language functions reflect the dominant practices for engaging in genre-specific tasks (e.g., students often orient audiences in narratives for ELA by describing the setting or characters). By contrast, the language features represent a sampling of linguistic and non-linguistic resources (e.g., connected clauses, noun phrases, tables, graphs) that students might use when performing a particular language function. Together, the KLUs, language functions, and language features capture what it would look and sound like for students to use language deftly in mathematics. Please see below for an example of how these three elements appear in the WIDA ELD Standards.

Image Source: 2020 Edition of WIDA ELD Standards Framework
The 2020 Edition of the WIDA ELD Standards Framework contains other resources, such as annotated language samples, that can support educators in promoting integrated language development in science. The annotated language samples show the language functions and language features in action with grade-level texts, as shown in the example below for the KLU Explain in grade 1, science. It offers insights into how educators might unpack the language of their discipline for the KLU Explain in grade 1 science.

Image Source: 2020 Edition of WIDA ELD Standards Framework
Elementary K-5
The K-5 NGSS standards are written for each grade level. High-quality curriculum that is rated green in all three gateways from EdReports, will assure your K-5 curriculum is standards-aligned with coherent progressions.
Middle School 6-8
Middle school NGSS are written for the 6-8 grade band and there is flexibility for how alignment and coherence exist in units of instruction and how they progress through the grade band. RIDE no longer prescribes one scope and sequence or advocates for any district developing their own scope and sequence for middle school. Instead, the adoption of high-quality curriculum that is rated green in all three gateways from EdReports, will assure your 6-8 curriculum is standards-aligned with coherent progressions.
High School 9-12
High school NGSS are written for the 9-12 grade band and there is flexibility for how alignment and coherence exist in units of instruction and how they progress through the grade band in the form of courses offered. RIDE no longer prescribes one scope and sequence or advocates for any district developing their own scope and sequence for middle school. Instead, the adoption of high-quality curriculum that is rated green in all three gateways from EdReports, will assure your high school course sequence is standards-aligned with coherent progressions. Districts that don’t adopt a curriculum like the example below will need to map each HQIM course independently to verify all standards are met with the appropriate learning progressions for SEP’s, CCC’s, DCI’s, and engineering concepts.
AAAS (1989). Science for All Americans: A Project 2061 Report. American Association for the Advancement of Science. Washington, D.C.: AAAS.
AAAS (1993). Benchmarks for Science Literacy, New York, NY: Oxford University Press. NRC (1996). National science education standards. Washington DC: National Academy Press.
A Look at the Next Generation Science Standards. (2013). Retrieved April 8th, 2021, from https://static.nsta.org/ngss/resources/InsideTheNGSSBox.pdf
Bell, P., Bricker, L., Tzou, Carrie, Lee., T., and Van Horne, K. (2012). Exploring the science framework; Engaging learners in science practices related to obtaining, evaluating, and communicating information. Science Scope, 36(3), 18-22.
How to Read NGSS. (2013, August 18th). Retrieved April 5th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/How to Read NGSS - Final 08.19.13_0.pdf
Matrix for K–12 Disciplinary Core Ideas in NGSS. (n.d.). Retrieved May 26th, 2021, from https://static.nsta.org/ngss/resources/MatrixForK-12ProgressionOfDisciplinaryCoreIdeasInNGSS.8.8.14.pdf
National Research Council. (2012). Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
National Research Council. 2012. A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States (Appendix E - Progressions Within the Next Generation Science Standards). Retrieved May 26th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/AppendixE-ProgressionswithinNGSS-061617.pdf
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States (Appendix F - Science and Engineering Practices). Retrieved April 10th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/Appendix F Science and Engineering Practices in the NGSS - FINAL 060513.pdf
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States (Appendix G – Crosscutting Concepts). Retrieved April 10th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/Appendix G - Crosscutting Concepts FINAL edited 4.10.13.pdf (nextgenscience.org)
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States (Appendix I - Engineering in the NGSS). Retrieved May 26th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/Appendix I - Engineering Design in NGSS - FINAL_V2.pdf
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States. (Appendix K - Model Course Mapping in Middle and High School for the Next Generation Science Standards). (2013, August 30th). Retrieved May 26th, 2021, from https://www.nextgenscience.org/sites/default/files/resource/files/Appendix K_Revised 8.30.13.pdf
Next Generation Science Standards Fact Sheet for Teachers. (2014, July 27th). Retrieved April 5th, 2021, from https://www.oregon.gov/ode/educator-resources/standards/science/Documents/ngss-fact-sheet---teachers-final-7-27-14.pdf
NGSS Lead States (2013). The Next Generation Science Standards: For States, By States (Topic Arrangements of the NGSS). Retrieved May 26th, 2021, from https://www.nextgenscience.org/overview-topics