Essential Element, Linkage Levels, and Mini-Map

Math: Grade 3

M.EE.3.NBT.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.3.NBT.2** Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction | **M.EE.3.NBT.2** Demonstrate understanding of place value to tens | **Initial Precursor:**
- Recognize separateness
- Recognize set
Distal Precursor:
- Explain ten as a composition of ten ones
Proximal Precursor:
- Recognize multiple tens and something
- Compose numbers based on tens
Target:
- Explain place value for ones and tens
Successor:
- Explain the relationship between rounding and place value
- Explain place value for hundreds |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.3.NBT.2- Demonstrate understanding of place value to tens
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 3
M.EE.3.NBT.3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.3.NBT.3 Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations | M.EE.3.NBT.3 Count by tens using models such as objects, base ten blocks, or money | Initial Precursor:
- Recognize before
- Recognize after
Distal Precursor:
- Explain number sequence pattern
Proximal Precursor:
- Rote count to 30
- Count to 30
Target:
- Skip count by 10s
Successor:
- Skip count by 10s starting at a multiple of 10
- Count with dimes
- Count with 10 dollar bills
- Explain repeated addition |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Initial Precursor</td>
<td>SP</td>
<td>Supporting</td>
</tr>
<tr>
<td>DP</td>
<td>Distal Precursor</td>
<td>S</td>
<td>Successor</td>
</tr>
<tr>
<td>PP</td>
<td>Proximal Precursor</td>
<td>UN</td>
<td>Untested</td>
</tr>
<tr>
<td>T</td>
<td>Target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.EE.3.NBT.3 Count by tens using models such as objects, base ten blocks, or money
Math: Grade 3

M.EE.3.NF.1-3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| **M.3.NF.1** Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction $\frac{a}{b}$ as the quantity formed by a parts of size $\frac{1}{b}$.; **M.3.NF.2** Understand a fraction as a number on the number line; represent fractions on a number line diagram.; **M.3.NF.3** Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size | **M.EE.3.NF.1-3** Differentiate a fractional part from a whole | **Initial Precursor:**
- Recognize some
Distal Precursor:
- Recognize separateness
- Recognize wholeness
Proximal Precursor:
- Partition shapes
Target:
- Recognize parts of a given whole or a unit
- Explain unit fraction
Successor:
- Recognize fraction
- Recognize whole on an area model
- Recognize one half on an area model |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.3.NF.1-3 Differentiate a fractional part from a whole
Grade-Level Standard | **DLM Essential Element** | **Linkage Levels**
--- | --- | ---
M.3.OA.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = _{-} \div 3$, $6 \times 6 = ?$ | M.EE.3.OA.4 Solve addition and subtraction problems when result is unknown, limited to operands and results within 20 |
| Initial Precursor: | Distal Precursor: | Proximal Precursor: |
- Recognize separateness | - Combine sets | - Recognize the addition sign |
- Recognize set | - Demonstrate the concept of addition | - Explain the function of the addition sign |
| Target: | Proxy Precursor: | - Represent addition with equations |
- Determine the unknown in a subtraction equation | - Recognize the subtraction sign | - Recognize the equal sign |
- Determine the unknown in an addition equation | - Explain the function of the minus sign | - Explain the function of the equal sign |
| Successor: | | - Represent subtraction with equations |
- Solve join problems | | - Recognize subtraction with equations |
- Solve part-part-whole problems | | - Recognize the equal sign |
- Solve compare problems | | - Explain the function of the equal sign |
- Solve separate problems | | |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.
A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target

M.3.OA.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. *For example, determine the unknown number that makes the equation true in each of the equations* $8 \times ? = 48$, $5 = _\div 3$, $6 \times 6 = ?$
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 3

M.EE.3.G.2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. 3.G.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as ¼ of the area of the shape</td>
<td>M.EE.3.G.2 Recognize that shapes can be partitioned into equal areas</td>
<td>Initial Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize wholeness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize parts of a given whole or a unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition shapes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Model equal part</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition circle into 2 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition circle into 3 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition circle into 4 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition a rectangle into rows and columns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition rectangle into 2 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition rectangle into 3 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition rectangle into 4 equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Partition any shape into equal parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize one tenth on an area model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize one third on an area model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize one half on an area model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Recognize one fourth on an area model</td>
</tr>
</tbody>
</table>

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE. 3.G.2 Recognize attributes of two-dimensional shapes
M.EE.3.MD.1

Grade-Level Standard

M.3.MD.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line.

DLM Essential Element

M.EE.3.MD.1 Tell time to the hour on a digital clock.

Linkage Levels

- **Initial Precursor:**
 - Attend
 - Recognize different

- **Distal Precursor:**
 - Recognize measurable attributes

- **Proximal Precursor:**
 - Recognize the hour on a digital clock
 - Recognize the minute on a digital clock

- **Target:**
 - Tell time to the hour

- **Successor:**
 - Tell time to the half hour
 - Tell time to the quarter hour

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE. 3.MD.1 Tell time to the hour on a digital clock
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 3

M.EE.3.MD.4

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters | M.EE.3.MD.4 Measure length of objects using standard tools, such as rulers, yardsticks, and meter sticks | Initial Precursor:
- Recognize attribute values
Distal Precursor:
- Make direct comparison of 2 lengths
Proximal Precursor:
- Demonstrate iteration of length unit
- Measure length using informal units
Target:
- Use an appropriate tool to measure length using inches
- Use an appropriate tool to measure length using feet
Successor:
- Compare lengths of 2 or more objects using standard tools |

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.3.MD.4 Measure length of objects using standard tools, such as rulers, yardsticks, and meter sticks
M.EE.3.MD.3

Math: Grade 3

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.3.MD.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using pictures presented in scaled bar graphs | M.EE.3.MD.3 Use picture or bar graph data to answer questions about data | **Initial Precursor:**
- Recognize attribute values
- Arrange objects in pairs

Distal Precursor:
- Classify
- Order objects

Proximal Precursor:
- Recognize the structure of a bar graph
- Recognize the structure of a picture graph

Target:
- Use bar graphs to read the data
- Use picture graphs to read the data

Successor:
- Use graphs to read between the data

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- **IP** Initial Precursor
- **SP** Supporting
- **DP** Distal Precursor
- **S** Successor
- **PP** Proximal Precursor
- **UN** Untested
- **T** Target
M.EE.3.MD.3 Use picture or bar graph data to answer questions about data
Essential Element, Linkage Levels, and Mini-Map

Math: Grade 3

M.EE.3.OA.1-2

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.3.OA.1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7; M.3.OA.2 Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each | M.EE.3.OA.1-2 Use repeated addition to find the total number of objects and determine the sum | **Initial Precursor:**
- Recognize subset
- Recognize set
- Recognize separateness

Distal Precursor:
- Demonstrate the concept of addition
- Combine sets
- Combine

Proximal Precursor:
- Represent repeated addition with an equation
- Represent repeated addition with a model

Target:
- Solve repeated addition problems

Successor:
- Demonstrate the concept of multiplication

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.
M.EE. 3.OA.1-2 Use repeated addition to find the total number of objects and determine the sum.
<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.3.OA.8</td>
<td>M.EE. 3.OA.8</td>
<td>Initial Precursor:</td>
</tr>
<tr>
<td></td>
<td>Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding</td>
<td>• Combine sets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partition sets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrate the concept of addition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrate the concept of subtraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximal Precursor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine the unknown in an addition equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine the unknown in a subtraction equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solve subtraction word problems within 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solve addition word problems within 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successor:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solve 2-step addition and subtraction word problems</td>
</tr>
</tbody>
</table>

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE. 3.OA.8 Solve one-step real world problems using addition or subtraction within 20
Essential Element, Linkage Levels, and Mini-Map
Math: Grade 3

M.EE.3.OA.9

<table>
<thead>
<tr>
<th>Grade-Level Standard</th>
<th>DLM Essential Element</th>
<th>Linkage Levels</th>
</tr>
</thead>
</table>
| M.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4, multiplied by any number can be decomposed into two equal addends (4x2 is equal to 4+4). | M.EE.3.OA.9 Identify arithmetic patterns | **Initial Precursor:**
- Recognize same
- Recognize different

Distal Precursor:
- Order objects
- Classify
- Contrast objects

Proximal Precursor:
- Recognize patterns

Target:
- Recognize repeating patterns
- Recognize symbolic patterns
- Recognize growing patterns

Successor:
- Extend a symbolic pattern by applying the rule
- Recognize the pattern rule in a growing pattern

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor
- SP Supporting
- DP Distal Precursor
- S Successor
- PP Proximal Precursor
- UN Untested
- T Target
M.EE.3.OA.9 Identify arithmetic patterns